V Guide System Guide

70° Units Overview
2. When using 1 -Blade Tracks, there is a design freedom for the distance between trucks.
3. When using 2 -Blade Tracks, system can be structured with only one truck.
4. Both 1 -Blade and 2 -Blade Tracks have pedestals and can be a ttached directily to
the plate.
5. Sized in metric.

Load Calculation

$\mathrm{L}=$ Load (N)
LS
$=$ Thust load applied to wheel (N)
$L R=$ Radial load applied to wheel (\mathbb{N})
$A, B=$ Distance (mm)
$A, B=$ Distance ((mm)

When load applied between the wheels $L S_{1}=\frac{L \times B}{A+B}$ $\mathrm{LS}_{2}=\mathrm{L}-\mathrm{LS}_{1}$ (EX.) $L=500$ (N) $A=40(\mathrm{~mm}$ $\mathrm{B}=60(\mathrm{~mm})$ $L S_{1}=\frac{500 \times 60}{40+60}=300(\mathrm{~N})$ $L_{2}=500-300=200(\mathrm{~N})$	
When load applied outside the wheels $\mathrm{LS}_{1}=\frac{\mathrm{LxA}}{B}$ $\mathrm{LS}_{2}=\mathrm{L}+\mathrm{LS}_{1}$ (EX.) $L=500$ (N) $A=60$ (mm) $\mathrm{B}=40(\mathrm{~mm})$ 500×60 $\mathrm{LS}_{1}=\frac{500 \times 60}{40}=750(\mathrm{~N})$ LS $\mathrm{S}_{2}=500+750=1250$ (N)	
When radial and thrust load are combined $\mathrm{LS}_{1}=\mathrm{LS}_{2}=\frac{\mathrm{LxA}}{\mathrm{B}}$ $\begin{array}{ll}\mathrm{LR}_{1}=\mathrm{L}+\mathrm{LS} \\ \mathrm{R}_{2} & =L S_{2}\end{array}$ $\mathrm{LR}_{2}=\mathrm{LS}_{2}$ EX_{2} (Ex.) $\mathrm{L}=500$ (N) $\mathrm{A}=60(\mathrm{~mm})$ $B=100(\mathrm{~mm})$ $\mathrm{LS}_{1}=\mathrm{LS}_{2}=\frac{500 \times 60}{100}=300(\mathrm{~N})$ $L R_{1}=500+300=800(\mathrm{~N})$	

System Assembly \& Adjustment
Fully tighten the fixed wheels
3. Next, tighten mounting nuts of Adjusting Wheel tentatively in order to adjust them. 4. Turn hexagon nut in the center of Adjusting Wheel gradually by wrench to set the other.
5. Check if proper preload is applied by turning the wheels with fingers while track k is
fixed and cariage plate remains still Although a s sight resistance may be felt the wheels should turn treely under a p proper reeload. Excessive prelload results in a shorter product life.
6. Make adiustments and test all the adiustable wheels in the above manner, and fully tighten the wheee nuts to to speccified torque.
.AAter adiustment, check again in the same process as five to make sure of proper
preload.

Life Calculation

Calculate life of the system and confirm
the validation of size selection.
Life $(\mathrm{km})=\frac{L C}{(L \Gamma)^{3}} \times$ Af
$\begin{array}{ll}\mathrm{LF} & =\text { Load Factor } \\ \mathrm{LC} \\ =\text { Basic Life }\end{array}$
$\begin{array}{ll}\text { LC } & =\text { LLoad facior } \\ \text { Af } & \text { = Basiutife } \\ \text { Adiustment Coefficient }\end{array}$

Part Number		$\begin{gathered} \text { LC Basic Life } \\ \mathrm{km} \end{gathered}$
Type	No.	
MVH	12	50
MVHS	25	70
MVHSL	34	100

$\mathrm{A}=$ adjustment Coefficient	Application Conditions
1.0-0.7	Clean, Low Speed, Low Shock, Light Load
0.7-0.4	Medium Level Contamination, Medium Level Shock, Medium Load, Vibration
0.4-0.1	Severe Contamination, High Level Acceleration, Heavy Load,

Calculation Example
When using MVH-34C under the conditions of $L S=100(\mathbb{N}), L R=200(N)$ and $A f=0.7$
Load Factor $L F=\frac{100}{800}+\frac{200}{1400}=0.268 \leq 1.0$
Life $(\mathrm{km})=\frac{100}{(0.268)^{3}} \times 0.7=3637 \mathrm{~km}$

70° V-Guide Units

Wheels \& Bushings / One-Blade Tracks / Double-Blade Tracks

Type		Material	Surface Treatment	Hardness
Double Sided Tracks	MVR	52100 Bearing Steel	Black oxide	58.62 HRC min. $70^{\circ} \mathrm{Cdge}$)
	MVRS	420 Stainess Steel	-	52 HRC min. $77^{\circ} \mathrm{Edge}$)

MVR / MVRS

Part Number	No.	L*	(w)	w_{1}	F	н	H_{1}	c	J	-	dxaxh	N	P
MVR	12	120-1020	12	${ }^{13.25}$	${ }^{3.2}$	6.4	1.8	8.9	1.7	4	$3.5 \times 6.2 \times 3.1$	15	45
	25	240-1140	25	26.58	4.93	10.2	2.5	15.4	2.6	6	$5.5 \times 10 \times 5.1$	30	90
	44		44	45.58	6.42	12.7	3	26.4	2.3	8	$7 \times 11 \times 6.1$	30	90
mvRS	12	120-1020	12	12.37	3	6.2	1.8	8.5	1.7	4	$3.5 \times 6 \times 3$	15	45
	25	240-1140	25	25.74	4.5	10	2.5	15	2.5	6	$5.5 \times 10 \times 5$	30	90
	44		44	44.74	6	12.5	3	26	2.5	8	$7 \times 11 \times 6$	30	90

品
Part Number
Example

Part Number
MVH12
WVRS25

RSS25
510

