727

V Guide System Guide

70° Units Overview

Functions & Features

- 1. Bearing and V groove (70°) are integrated in a single unit.
- 2. When using 1-Blade Tracks, there is a design freedom for the distance between trucks.
- 3. When using 2-Blade Tracks, system can be structured with only one truck.
- 4. Both 1-Blade and 2-Blade Tracks have pedestals and can be attached directly to the plate.
- 5. Sized in metric.

Load Calculation

L = Load (N)

Carriers

- LS = Thrust load applied to wheel (N)
- LR = Radial load applied to wheel (N)
- A, B = Distance (mm)

System Assembly & Adjustments

- $1. \ First, assemble \ the \ components \ loosely \ with \ a \ minimum \ load.$
- 2. Fully tighten the fixed wheels.
- 3. Next, tighten mounting nuts of Adjusting Wheel tentatively in order to adjust them.
- Turn hexagon nut in the center of Adjusting Wheel gradually by wrench to set the minimum preload, and do not leave a gap between each pair of wheels facing each other.
- 5. Check if proper preload is applied by turning the wheels with fingers while track is fixed and carriage plate remains still. Although a slight resistance may be felt, the wheels should turn freely under a proper preload. Excessive preload results in a shorter product life.
- 6. Make adjustments and test all the adjustable wheels in the above manner, and fully tighten the wheel nuts to the specified torque.
- After adjustment, check again in the same process as five to make sure of proper preload.

Basic Structure

Track Mounting Hole / Truck Adjusting Wheel Tightening Nut Fixed Wheel djusting Wheel Hexagon Nut

Usage Examples

Load Calculation

Calculate the load factor (LF) of the wheel to which the biggest load is applied. Select the wheel whose load factor is less than 1.

$$= \frac{LS}{LS \max} + \frac{LR}{LR \max}$$

= Load Factor

= Thrust Load applied to wheel

 $LS \ max = Maximum \ Thrust \ Load \ applied \ to \ wheel$

LR = Radial Load applied to wheel

LR max = Maximum Radial Load applied to wheel

Part Numb	er	Without L	ubrication	With Lubrication					
Туре	No.	LSmax (N)	LRmax (N)	LSmax (N)	LRmax (N)				
MVH	12	22.5	45	60	120				
MVHS MVHL	25	100	200	320	600				
MVHSL	34	200	400	800	1400				

Life Calculation

Calculate life of the system and confirm the validation of size selection.

Life (km) =
$$\frac{LC}{(LF)^3}$$
 x Af

F = Load Factor C = Basic Life

Δf	– Adjustment Coeffici	ρ

Part Numb	LC Basic Life					
Туре	No.	km				
MVH	12	50				
MVHS MVHL	25	70				
MVHSL	34	100				

Af= Adjustment Coefficient	Application Conditions
1.0-0.7	Clean, Low Speed, Low Shock, Light Load
0.7–0.4	Medium Level Contamination, Medium Level Shock, Medium Load, Vibration
0.4–0.1	Severe Contamination, High Level Acceleration, Heavy Load, Vibration, High Cycle

Calculation Example

When using MVH-34C under the conditions of LS=100 (N), LR=200 (N) and Af=0.7

Load Factor LF =
$$\frac{100}{800} + \frac{200}{1400} = 0.268 \le 1.0$$

Life (km) =
$$\frac{100}{(0.268)^3}$$
 x 0.7 = 3637 km

70° V-Guide Units

Wheels & Bushings / One-Blade Tracks / Double-Blade Tracks

Part Numbe	r	C = Fixed	Applicable		_	_	_		_							N	_	_		Thrust Load	
Туре	No.	E = Adjustable	Rail No.	Α	В	B ₁	C	D	E	M	M ₁	M ₂	J	K	-	Eccentricity	0	P	Torque Nm	LSmax. (N)	LRmax. (N)
MVH	12	C E	12	12.7	10.1	5.47	5.8	9.51	5	M4 x 0.5	7	9	0.8	2	_	0.5	4	7	2	22.5	45
MVHS C Dimension	25	C E	25	25	16.6	9	9.8	20.27	10	M8 x 1.0	13	17	1	5	3	0.75	8	13	18	100	200
Short	34	C E	44	34	21.3	11.5	13.8	27.13	12	M10 x 1.25	17	21	1.25	6	4	1.0	10	15	33	200	400
MVHL	12	C E	12	12.7	10.1	5.47	9.5	9.51	5	M4 x 0.5	7	9	0.8	2	_	0.5	4	7	2	22.5	45
MVHSL C Dimension	25	C E	25	25	16.6	9	19	20.27	10	M8 x 1.0	13	17	1	5	3	0.75	8	13	18	100	200
Long	34	C E	44	34	21.3	11.5	22	27.13	12	M10 x 1.25	17	21	1.25	6	4	1.0	10	15	33	200	400

O No adjusting hexagon groove (L) for adjusting wheel (E) No.12. O Thrust load and radial load values are those when lubricated. For values when not lubricated, see P.726.

Part Number	Part Number		1			1						T	T
Type	No.	L*	(W)	W ₁	F	Н	H ₁	C	J	D	d x G x h	N	P
1950	12	120-1020	12	13.25	3.2	6.4	1.8	8.9	1.7	4	3.5 x 6.2 x 3.1	15	45
MVR	25	240 1140	25	26.58	4.93	10.2	2.5	15.4	2.6	6	5.5 x 10 x 5.1	30	90
	44	240–1140	44	45.58	6.42	12.7	3	26.4	2.3	8	7 x 11 x 6.1	30	90
	12	120-1020	12	12.37	3	6.2	1.8	8.5	1.7	4	3.5 x 6 x 3	15	45
MVRS	25	240–1140	25	25.74	4.5	10	2.5	15	2.5	6	5.5 x 10 x 5	30	90
	44	240-1140	44	44.74	6	12.5	3	26	2.5	8	7 x 11 x 6	30	90

