—FULLY TAPERED TYPE—

PRECISION CARBIDE ANGULAR BUTTON DIES

Cat	alog No.							0	0.001mm i	ncrements	н	т	Base unit	price for he	eaded type	Base unit	price for st	raight type
Ту	pe	D				-			min. P	max.	"	'	VSAHD	VPAHD	VWAHD	VSASD	VPASD	VWASD
		3							0.500 ~	- 1.000	4							
Headed	Straight	4	8	13	16 2	0 22	2 25 3	0	0.500 ~	- 1.500	5	3						
VSAHD	VSASD	5	1						0.500 ~	- 2.500	6) LIGH	atior	7	
VPAHD	VPASD	6							1.000 ~	- 3.000	9				luot	alior		
VWAHD	VWASD	8	1	13	16 2	0 22	2 25 3	0	1.000 ~	4.000	11	5						
		10	1					Г	2.000 ~	- 6.000	13	ĺ						

n some cases, a straight portion of up to 1 mm may be created at the shaped hole part.

- \P If L=8, press-in lead $D_{-0.03}^{-0.01}$ is not included. \P For VWAHD, press-in lead $D_{-0.03}^{-0.01}$ is not included.
 - Relieve machining is not performed for VWAHD under-head. Instead, R \leq 0.2 in case of D3 \sim 5 and R \leq 0.5 in case of D6 \sim 10.

Quotation

	Alteration	Code	Spec.	1Code
Alterations to full length		LC	Full length change 10≦LC <l (l—lc).<="" 0.01="" by="" increments="" is="" lead="" mm="" press-in="" shortened="" th=""><th></th></l>	
Alteration		LKC	Full length tolerance change $L^{+0.05}_{0} \Leftrightarrow ^{+0.01}_{0}$ \bigotimes Cannot be used for L<16.	lo
ead	0	KC	Addition of single key flat to head & Cannot be used for straight types.	otat
ıs to h		WKC	Addition of double key flats in parallel & Cannot be used for straight types.	Ø
Alterations to head	0	KFC	Double key flats at 0° and a selected anglet 1° increments Cannot be used for L < 16. Cannot be used for straight types.	

	Alteration	Code	Spec.	1Code
s to head	HC	НС	Head diameter change D≦HC < H 0.1mm increments	
Alterations to head		TC	Head thickness change 2≦TC <t 0.01mm="" <p="" increments=""> Full length L is shortened by (T−TC). If combined with LC, full length is equal to LC.</t>	ation
Alterations to shank	h±01] [-06	KM	Addition of key groove to prevent lifting ⊗ Cannot be used for headed types. ⊗ Cannot be used for D<6. D h ℓ 6 1 5≤ℓ <l 0.1mm="" 1.5="" 8="" increments<="" th=""><th>Quotati</th></l>	Quotati

When a thin sheet of 0.5mm or less is punched using a button die with rear relief, scrap may be turned due to the level difference between the straight portion of shaped hole and the relief hole. As a result, the scrap may adhere to the die wall, resulting in scrap clogging.

- An angular relief hole tapered at a very slight angle from the end of the shaped hole prevents scraps from being turned, reducing trouble caused by scrap clogging.
- . The effects of this non-clogging effect improves with shorter full length of button die relative to the P dimension.

Туре	M	Catalog No.	Shape
-Headed- RoHS	V40 (HIP) 87~88HRA	VAHD	150 1 150 1 150 0 150 0 15
	Super fine grain (HIP) 90~92HRA	VXAHD	R≤0.2 $H = \frac{0.2}{6}$
-Straight- RoHS	V40 (HIP) 87~88HRA	VASD	150 1 15 0 1 15 0 002 0.0015
	Super fine grain (HIP) 90~92HRA	VXASD	D=0.01 D=0.03 Is P<1.00, relief taper is 1/50.

	Catalog No.		L	0.001mm increments	н	Т
ly	pe	D		min. P max.		
		3	12	$0.500 \sim 1.000$	4	
Headed	Straight	4	13 16	$0.500 \sim 1.500$	5	3
VAHD	VASD	5	20	$0.500\sim 2.500$	6	
		6	20 22	$1.000 \sim 3.000$	9	
VXAHD	VXASD	8	22 25	$1.000 \sim 4.000$	11	5
		10	20	$2.000 \sim 6.000$	13]

Quotation

Catalog No.]-	L(LC)	-	Р	-	$(\textbf{BC} \boldsymbol{\cdot} \textbf{HC} \boldsymbol{\cdot} \textbf{TC}, \textbf{etc.})$
VAHD 6	_	I C18		P2 500	_	LKC

	Alteration	Code	Spec.	1Code
Shaped hole	BBB	ВС	Shaped hole depth change P Bmax. 1≤BC≤Bmax. 0.500~0.899 2 0.900~1.199 3 1.200~ 4	
Alterations to full length		LC	Full length change for headed types $L - 3 \leq LC < L$ 0.1mm increments (if combined with LKC, 0.01mm increments can be selected.) Full length change for straight types $8 \leq LC < L$ 0.1mm increments (if combined with LKC, 0.01mm increments can be selected.) Full length tolerance change	uotation
	<u> </u>	KC		Quo
s to h	0	WKC	Addition of double key flats in parallel & Cannot be used for straight types.	
Alterations to head	0	KFC	Double key flats at 0° and a selected angle1° increments © Cannot be combined with KC-WKC. Cannot be used for L <16. Cannot be used for straight types.	

	Alteration	Code	Spec.	1Code	
ad	HC HC	НС	Head diameter change D≦HC <h 0.1mm="" be="" cannot="" for="" increments="" straight="" th="" types.<="" used="" ⊗=""><th></th><th></th></h>		
Head		TC	Head thickness change 2≦TC <t 0.1mm="" increments<br="">③ Full length is shortened by (T−TC). ③ If combined with LC, full length is equal to LC. ③ Cannot be used for straight types.</t>		
Alterations to shank	1-150 ANF ±20'	ANF	Angular angle change $0.4 \leq ANF \leq 1.2 \qquad 0.2^{\circ} \text{ increments}$ $0.$	Quotation	
Altera	$h_{\pm 0.1}$ $\ell^{-0.05}$	KM	Addition of key groove to prevent lifting		5