ters / Temperature Cont Insulating Plates

Cord Heater MCDH 100V, 200V / Single-Phase L(Heat-Generating Part) Material: Elements: Silicon Rubber Sleeve: Silicon Rubber Lead Wire: Copper (Cu) RoHS 10 Maximum Operating Temperature: 180° Lead Wire Film: Silicon Rubber

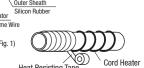
Part Number		L	W	V	Electrical Power Density	
Туре	No.	(Heat-Generating Part)	(Electrical Power)	(Voltage)	(W/cm²)	
MCDH	1	1000	10	400		
	2	2000	20	100	0.13	
	3	3000	30			
	4	4000	40	200		
	5	5000	50			

Part Number

Annlication Example

Features

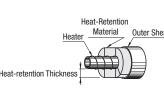
- Excels in heat resistance as the sheathing of the heater is silicon rubbe
- As the heater is flexible, it can be fitted in any type of shape. Maximum Operating Temperature is 180°C.


Basic Structure

This is a heater integrating a heat generating body with the silicon rubber.

Basic Structure Diagram \ Heat Generator

How to Mount


- Install directly onto piping
- As an example to secure the heater heat resistant aluminum tape can be used.

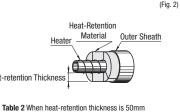
Ex.) For piping size 15A (1/4B) and length 1m to be 30°C

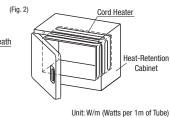
(Refer to Fig. 2, Table 1 and 2)

Heat Quantity Required for The Heater(W) = Number of Watt per 1m of Pipe (W/m) x Length of Pipe (m)

From Table 1, when the insulation thickness is 25 mm, piping size is 15A (1/4B) and the temperature difference

between pipe temperature (30°C) and external atmospheric temperature (20°C) is 10°C, the wattage is 4.0 (W/m).


Selection Method (Cord Heaters and Silicon Belt Heaters)


(Heat-insulation thickness is 25mm and external atmospheric temperature is 20°C)

Heat Quantity Required for The Heater (W)=4.0 (W/m) x1 (m)=4.0W

Calculate with the following formula by using the heat insulating thickness, size of piping,

temperature of piping and temperature difference with the external atmospheric temperature.

	iadie i	wnen neat-r	etention tnickn	ess is 25mm		Uni	t: w/m (watts p	per im of lube			
	Tu	be Size		Temperature Difference between Pipe Temperature and External Atmospheric Temperature							
į	Α	В	10°C	20°C	30°C	40°C	60°C	80°C			
	15	1/4	4.0	8.1	12.1	16.1	24.4	32.6			
j	20	1/2	4.6	9.2	13.9	18.5	27.6	36.9			
Ī	25	1	5.4	10.6	16.0	21.4	32.0	42.8			
ĺ	32	1 1/4	6.3	12.5	18.8	24.9	37.5	50.1			
	40	1 1/2	6.9	13.7	20.5	27.5	41.3	54.9			
	50	2	8.1	16.1	24.2	32.2	48.4	64.5			
	65	2 1/2	9.5	19.1	28.6	38.3	57.2	76.4			
	80	3	10.9	21.6	32.5	43.4	65.0	86.6			
	100	4	13.2	26.6	39.9	53.3	79.6	126.5			
Ī	150	6	18.2	36.5	54.8	73.1	109.5	145.9			
Ī	200	8	23.3	46.5	69.6	92.9	139.1	185.5			
į	250	10	28.1	56.3	84.4	112.5	168.8	225.0			

Holl	low Size	Temperature Difference between Pipe Temperature and External Atmospheric Temperature						
Α	В	10°C	20°C	30°C	40°C	60°C	80°C	
15	1/4	2.7	5.6	8.4	11.3	16.9	22.5	
20	1/2	3.1	6.2	9.4	12.5	18.8	25.5	
25	1	3.5	7.0	10.6	14.1	21.1	28.1	
32	1 1/4	4.0	8.0	12.0	16.0	24.1	32.1	
40	1 1/2	4.4	8.6	13.0	17.3	26.0	34.7	
50	2	5.0	9.9	14.9	19.7	29.9	39.8	
65	2 1/2	5.7	11.5	17.3	23.1	34.5	46.0	
80	3	6.4	12.9	19.2	25.6	38.5	51.2	
100	4	7.6	15.4	23.0	30.8	46.0	61.4	
150	6	10.2	20.4	30.6	40.9	61.1	81.5	
200	8	12.8	25.4	38.1	50.9	76.1	101.5	
250	10	15.1	30.4	45.5	60.8	91.0	121.4	

Operating Temperature (°C)

Tensile Strength (N/cm)

Elongation (%)

			Heat		
Туре		Surface	Heater	Adhesive Part	Resistance Temp.
(1)	MCAT	Aluminum Alloy	Glass Cloth	Acrylic Adhesive Material	150°C
(2)	MCTF	Fluoro Resin (PTFE)	Silicon Adhesives	200°C
(3)	MCTFG	Fluoro Resin (PTFE)	Glass Cloth	Silicon Adhesives	200°C

	 Peel off backing paper to adhere it to an object after peeling off the backing paper. (MCAT only) Wipe off oil and dust on the mating surface before adherin Can be cut with a utility knife.

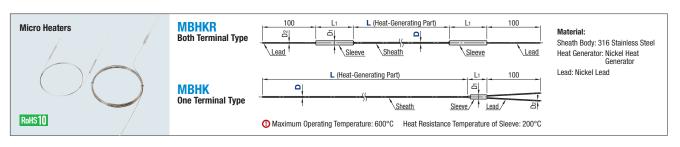
Part Number							
Туре	W (mm)	O L (m)	(mm)				
MCAT	20 50	20	0.25				
MCTF	25 50	10	0.23				
MCTFG	25 50	10	0.18				

U L dimension is in meters.

* The adhesive strength means the 180° peeling strength. (When adhered to 304 Stainless Steel)

Characteristic Values of Heat Resistance Tapes (Listed values are not guaranteed values but reference values.)

MCAT MCTF MCTFG


150 200 200

16 10 12.9

108 330 12.5 20.0 4.7

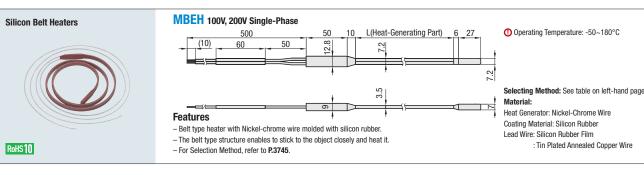
24

Micro Heaters / Silicon Belt Heaters

Part Nun	ber	V	w	L	Lı	D ₁	D ₂	Electrical Power
Type	D	(Voltage)	(Electrical Power)	(Heat-Generating Part)	L1	υı	D ₂	Density (W/cm²)
	1.0	100	200	1750	50	5.0	1.0	3.6
	1.0	200	400	3500	1 20	6.4	1.0	
MDUWD	4.0	100	300	3000			1.0	2
MBHKR	1.6	200	600	6000	50	6.4	1.0	
	2.4	100	600	3600	70	8.0	1.4	2.2
		200	1200	7200	70			
МВНК	1.6	100	250	1350		6.4	1.0	3.7
		200	500	2700	36		1.0	3.7
	2.4	100	400	1950	36	8.0	1.0	2.7
		200	800	3800	1		1.0	2.8

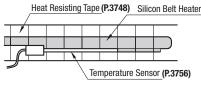
Application MBHKR / MBH

Structure


Insulating powers and a heat generator are hermetic-sealed and enclosed within sheath in the same manner as sheath thermocouple.

Features

- The tube of the heater is extremely thin, and usable for narrow and complicated places.
- Enhanced flexibility enables part to be molded into different shapes.
- Minimum bending radius should be up to 3 times of D dimension.


Precautions for Use

- Do not cross the sheath part or contact to the part.
- Be sure to use Temperature Control Unit since heat tends to stay by covering with material of low thermal conductivity such as heat insulation material.
- The tube of the heater is extremely thin. Excessive tension may cause breakage in the tube.

Part Number		L	V	w	Electrical Power	
Туре	No.	(Heat-Generating Part)	(Voltage)	(Electrical Power)	Density (W/cm²)	
	1050	1000	100	50	0.7	
MBEH	2050	2000	200	50	0.35	
	3100	3000	200	100	0.5	

Precautions for Use

- ① Do not let heater run idle in the atmosphere. It may cause fires and broken wire.
- O Do not install by overlapping the heater.
- Do not use over the rated voltage (V).
- 1 This product is not water-proof. Do not use in places where water splashes or humidity is high. Wrap with heat resistant tape from the top to use.
- ① When removing the heater from the heated object, make sure the power is turned off. Do not touch the heater immediately after the power is turned off
- Use Temperature Adjusters or Temperature Controllers for safety.

