Characteristics of PET，Antistatic PVC，Acrylic and Polycarbonat

Provides three types of clear plates with superior transparency．In addition to the standard grade，antistatic grade is available． 4 colors，transparent， smoke brown，smoke grey and orange，are available．

It has approx． 4 times stronger impact resistance than that of acrylic．Moreover it is an environment－friendly material，which generates no poisonous gas when burned．It is also cost effective．
－Antistatic PVC
Excels in chemical resistance and flame resistance，and superior in cost－effectiveness among anti－static materials．
Acrylic
Excels in transparency，weather resistance and machinabiity，and is used widely for indoor and outdoor purposes，such as covers for industria machinery，art display cases and signboards．
Polycarbonat
The level of impact strength is ranked as the highest among the transparent resin materials（approx． 30 times higher than that of acrylic plates）．It excels in resistance against high and low temperatures，and is widely used

Item		Testing Method JIS	Unit	Part Number													
		PET		PVC	Acrylic（Cast）		Acrylic Economy（Extrusion）			Polycarbonate							
		$\begin{array}{\|c\|} \hline \text { Standard } \mid \text { Antistatic } \\ \hline \text { P. } 903 \end{array}$		$\begin{array}{\|c\|} \hline \text { Antistatic } \\ \hline \text { P. } 907 \\ \hline \end{array}$	Standard Antistatic		Standard		Antistatic	Standard	Antistatic Alasiomensisant						
		P． 909			P． 913			P． 915									
		$\begin{array}{\|l\|} \hline \text { PYA } \\ \text { PYBA } \\ \text { PYDA } \end{array}$		$\begin{aligned} & \text { PYTA } \\ & \text { PYBTA } \end{aligned}$	ENBT ENBBT	$\begin{aligned} & \text { ACA } \\ & \text { ACBA } \\ & \text { ACDA } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { ACTA } \\ \text { ACBTA } \end{array}$	ACAE	ACBAE	$=A \text { ACTAE }$	$\left\lvert\, \begin{gathered} \text { PCTA } \\ \text { PCTBA } \\ \text { PCTGA } \end{gathered}\right.$	$\begin{aligned} & \text { PCTTA } \\ & \text { PCTBTA } \end{aligned}$	PCTS				
	ne: Smoxe Boom) Gray)				－	\％	$\begin{aligned} & \hline \text { PYA: } 87 \\ & \text { PYBA: } 28 \\ & \text { PYDA: } 45 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { PYTA: } 80 \\ \text { PYBTA: } 30 \end{array}$	ENBT： 80 ENBBT： 29	$\begin{aligned} & \text { ACA: } 93 \\ & \text { ACBA: } 25 \\ & \text { ACDA: } 43 \end{aligned}$	$\left\|\begin{array}{\|l\|} \hline \text { ACTA: } 79 \\ \text { ACBTA: } 32 \end{array}\right\|$	ACAE：92	ACBEE： 34	4	$\begin{array}{\|l\|} \hline \text { PCTA: } 90 \\ \text { PCTBA: } 35 \\ \hline \text { PCTGA: } 33 \\ \hline \end{array}$	PCTTA： 86 PCTBA： 35	PCTSP：9
		K－7113	$\begin{array}{c\|} \mathrm{MPa} \\ \left\{\mathrm{kgf} / \mathrm{cm}^{2}\right\} \end{array}$	$\begin{gathered} 62 \\ \{630\} \end{gathered}$	$\begin{gathered} 52 \\ \{530\} \end{gathered}$	$\begin{gathered} 63 \\ \{640\} \end{gathered}$	$\begin{gathered} 75 \\ \{760\} \end{gathered}$	$\begin{gathered} 75 \\ \{760\} \end{gathered}$	$\begin{gathered} 67 \\ \{682\} \end{gathered}$	$\begin{gathered} 76 \\ \{774\} \end{gathered}$	$\begin{gathered} 73 \\ \{754\} \end{gathered}$	$\begin{gathered} 65 \\ \{663\} \end{gathered}$	$\begin{gathered} 65 \\ \{663\} \end{gathered}$	$\begin{gathered} 65 \\ \{663\} \end{gathered}$			
\％Elongation＊		13	\％	15		50	2～7	5	4	5	5	83	83	83			
霽 3 Ending Strength		K－7203	$\begin{gathered} \mathrm{MPa} \\ \left\{\mathrm{kgf} / \mathrm{cm}^{2}\right\} \end{gathered}$	$\begin{gathered} 83 \\ \{850\} \\ \hline \end{gathered}$	$\begin{gathered} 71 \\ \{730\} \end{gathered}$	98 $\{1000\}$	$\begin{gathered} 117 \\ \{1200\} \end{gathered}$	106 $\{1080\}$	111	125 $\{1274\}$	122 $\{1244\}$	9.2	90 9.2	93 9.5			
Flexural Modulus		$\begin{array}{\|c\|} \hline K-7203 \\ \hline K-7181 \end{array}$	MPa	2.4×10^{3}	2.0×10^{3}	3.4×10^{3}	3.2×10^{3}	3.3×10^{3}	3400	3500	3300	2300	2300	2300			
$\begin{array}{ll} \text { Ompression } \\ \text { Strength } \end{array}$	Yield Point		$\begin{gathered} \mathrm{MPa} \\ \left\{\mathrm{kgf} / \mathrm{cm}^{2}\right\} \end{gathered}$		$\begin{gathered} 60 \\ \{610\} \end{gathered}$	$\begin{gathered} 83 \\ \{850\} \end{gathered}$	$\begin{gathered} 124 \\ \{1270\} \end{gathered}$		$\begin{gathered} 120 \\ \{1200\} \end{gathered}$			$\begin{gathered} \hline 78 \\ 7.95 \\ \hline \end{gathered}$	$\begin{gathered} \hline 78 \\ 7.95 \\ \hline \end{gathered}$				
Izot Impact Strength		K－7110	$\mathrm{kJ} / \mathrm{m}^{2}$	10		2.9	2.7		2.5	1.5	2	15	15				
${ }^{5}$ R Rockwell Hardness	M Scale			59	46		100	100	100	99	97	67	70				
\％Continuous Use			${ }^{\circ} \mathrm{C}$	－15～55	－15～55	－30～60	－30～80	－30～80	－30～70	$-30 \sim 70$	－30－60	－30～100	－30～100	－30～100			
		K－7191	${ }^{\circ} \mathrm{C}$	70	69		100	85	90	110	92	135	135	135			
${ }_{\text {M }}^{5}$ Linear Expansion Coefficient		K－7140	${ }^{\circ} \mathrm{C}^{-1}$	6.8×10^{-5}	7.5×10^{-5}	7．0x10	7．0x10．5	5.9×10^{-5}	7．0x10．5	7．0x10．5	7．0x10．5	6.5×10^{-5}	5.2×10^{-5}	6.5×10^{-5}			
蔵 Thermal Conductivity			W／m．K			0.16	0.21		0.21	0.21		0.24					
			J／g．K	1.3	1.35	1.12	1.46	1.46	1.46	1.47	1.5	1.3	1.2				
$\stackrel{8}{5}$ Suface Resistivity		K－6911	Ω	$>10^{10}$	$10^{6} \sim 10^{8}$	$10^{7} \sim 10^{8}$	$>10^{15}$	$10^{6} \sim 10^{8}$	$>10^{15}$	$>10^{16}$	107 10^{8}	＞2．0x1010	$10^{6} \sim 10^{8}$	$>2.0 \times 10^{16}$			
\％itis Specific Volume Resistivity		K－6911	$\Omega . \mathrm{cm}$	$>10^{11}$	$>10^{17}$		$>10^{15}$	$>10^{17}$	$>10^{15}$	$>10^{15}$	$>10^{15}$	$>10{ }^{17}$	$>10^{17}$	$>10^{17}$			
穃 Insulation Breakdown Votage		K－6911	kV／mm				20		20	20		20		20			
－Diilectric Constant	$10^{6 \% H z}$	K－6911		3.2			3.2	2.9	3.1	4	－	3	3	3			
既 Dissipation Factor	$10^{6} \mathrm{~Hz}$	K－6911				－	0.06	0.032	0.06	0.06	－	0.009	0.06	－			
Specific Gravity				1.27	1.27	1.4	1.2	1.2	1.2	1.19	1.19	1.2	1.2	1.2			
Water Absorption Ratio		K－7209	\％			0.03	0.4	0.18	0.4	0.3	0.4	0.24	0.15				
Flame Resistance				－	－		\times	\times	－	－	－	Stleferiguidut	－	－			
Chemical Resistance	0il			\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\times	\bigcirc			
	Acid			\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	$\times \sim \Delta$	\triangle	\times	\triangle			
	Akali			$\times \sim \Delta$	$\times \sim \Delta$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times			
	Oqgaricsolvent	－		\times	\times	$\times \sim \triangle$	x～\triangle	$\times \sim \triangle$	$\times \sim \Delta$	X～\triangle	X～\triangle	\times	\times	\times			

Listed values are not guaranteed values but representative values．
 alues of elongation of polycarbonate and PET are \％values measured by JIS $\mathrm{K}-7162-18 / 50$ ．

Characteristics of Acrylic Cast Plates and Extruded Plates
As for Acrylic Plates，cast plates made by cell－cast method and extruded plates are avaiable．
Cast plates have better heat resistance and stronger mechanical strength than extruded plates．
Cast plates have better heat resistance and stronger mechanical strength than extruded plates．
When extruded plates come into contact with vaporizing liquid such as methanol and methylene chloride after they are thermal－processed Also，extruded plates may have deflection at high temperature．

