Gas Springs
Mounting Orientation Free Type

Gas Springs

High pressure gas Nitrogen gas: non-
combustibe) is sealed in a cylinder and combustibe) is sealed in a cylinder,
the gas reaction force is used as spring. Because this small gas spring receive smal
spring constant trom large intial load in spring constant from large initial load in
spite of its size, it can be used for wide range of applications includuing machines,
furniture, cars, office automation ecuiipment furriture,
etc.

Feature

In spite of its size and weight, large spring (reaction) force can be obtained.
Spring (reaction) force is almost constant throughout its stroke.

About Initial Selection

1. Calculate the necessary reaction force
(F) through the following formula, then (F) through the following formula, the

F: Nengsthry Reaction Force (at Max.
W: Weight of Doors, etc.
A: Horizontal Distance between Fulcrum (Door Hinge, etc.) and the Center of Gravity
B: Vertical Distance between Fulcrum (Door Hinge, etc.) and the Axis of
Gas Spring
Select Fx1. 1 or more for the gas spring reaction force. . Select Frx.I or more for the gas spring reaction 3. If required reaction force (Fx1.1) is larger than the reaction force at the max. length of gas spring - $-(\mathrm{mm}$, use 2 or more springs.
Reaction forces are designed at $20^{\circ} \mathrm{C}$. Reaction forces

About Final Selection

Load may vary depending on door angles or gas spring mounting positions. Calculate the reaction force
moment based on the subject design drawing.
§Precautions for Use (for FGS, GSS, FGSS, HFGSS and FRGSS) Pay attention to temperature of gas springs during use. Do not store for prolonged duration. It will cause premature seal deteriferiotion and reaction force declin (Product Temperature Range: GSS, FGSS: $-20^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C} / \mathrm{HFGSS}:-20^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C} /$ FRGSS: $-30^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C}$ Some products have different temperature range. Confirm for product page.)

Reaction force may decrease depending on the operating condition and times of use. Please replace it when it cannot reach the necessary reaction force. Do not store or use in the environments where the rod may rust, or in chemical atmosphere. Furthermore, do not paint the gas spring.
Do not damage the cyinders and rods. If rods are wrapped with tape or plastic strings adhesives or fibers remained on the surface will
Do not damage the cylinders and rods. If rod are warapeen with tape or plastic strings, adiesives or fibers remained on the surface will come inside, resulting in
leakage. For rotataing motion, be sure to seccure smooth siliding on the hinge. For linear motion, install a quide, etc. to phevent unbalanced load. Do not extend gas springs beyond its max. length. Even in the max. stroke (during compression), it must remain about 10mm away from the stroke end. Do not Use FGS and GSS with the cylinder side up and the rod side down, so that internal oil protects the rubber seal. For FGS, GSS and FRGSS, do not till more than 60
degrees. When it is necessary to temporarily store, do not tilt more than 60 degrees.

Features of Mounting Orientation Free Gas Springs (FGSS)
eatures of Mounting Orien Sation

1. Nitrogen gas (non-combustible) is sealed in the gas chamber C with a free moving piston intervening, and gas reaction force is used as a spring 2. Gas chamber C has a constant reaction force in extending direction since it pressurizes oil chamber AB. Therefore the size of reaction force depends on the inner pressure of gas chamber C.
.
2. The rod volume change in the cylinder is adjusted by the change of gas chamber C.

