V Guide Systems - Overview

90° Type

■V Guide System Structure

Wheel-Rail Combination Examples

C2

Functions and Features

1. Bearing and V groove $\left(90^{\circ}\right)$ are integrated in a single unit.
2. When using Sind

When using ingle Sided Tracks, there is a design freedom for the distance between track
4. As the wheel circumference is V shaped, they have wiping effect to clean up automatically while rotating on the track. Grease the track sliding surface for
4. As the wheelcicumf
longer operational life
5. Sized in inch.

Mounting Dimensions

\qquad

Adjusting Method

1. The accuracy of this system depends on the straightness and parallelism of the support (back plate) on which the track rails are mounted The corners of the back plate to which a track rail is mounted must be chamfered 0.5 mmx 0.5 mm .
The straightness of the track rail depends on the straightness of the back plate.
When mounted on precision back plate; $\pm 0.05 \mathrm{~mm}$
2. When jointing parallel track rails, give a slight offset to the joint locations. This enables the wheels to travel smoothly over the joints.
. As the circunference of the wheel is V -shaped, the wheel makes wiping effect when it rotates on the track rail. Therefore, it automatically cleans itsel
3. Grasing on the sliding face of the track rails extends their service life.
4. Adjust the eccentric bushing by rotating so that the wheel travels on the track rail smoothly, then tighten.

Load Calculation

Calculate the load factor (LF) of the wheel to which the biggest load is applied

Select the wheel whose load factor is less than 1 .
$L F=\frac{L S}{L S m a x}+\frac{L R}{L R \max }$
$\mathrm{L}=$ Load Factor
Smax = Maximum Thrust Load
Rmax = Maximum Radial Load
LS= Thrust Load applied to wheel $L R=$ Radial Load applied to wheel <Calculation Example>
When load applied between the wheels
$L S=\frac{L \times B}{A+B}$
$L S_{2}=-L S 1$
(EX.) L=500 (N) A=40 (mm)
$B=60(\mathrm{~mm})$
500×60
$L S_{1}=\frac{500 \times 60}{40+60}=300(\mathrm{~N})$
LS $2=500-300=200$ (N)

$L S_{1}=\frac{L \times A}{B}$
$L S_{2}=+L S$

(X.) $\quad B=40(\mathrm{~mm})$
500×60
$L S 1=\frac{500 \times 60}{40}=750(\mathrm{~N})$
$\mathrm{LS}_{2}=500+750=1250$ (N)
When radial and thrust load are combined
$L S_{1}=L S_{2}=\frac{L \times A}{B}$
$L R_{1}=L+L S$
$L R=2=L 2$
(EX.) $\left.\begin{array}{c}L=500(\mathrm{~N}) \\ B=100(\mathrm{~mm})\end{array}\right)(\mathrm{mm})$.
$B=100(\mathrm{~mm})$
$L S_{1}=L S_{2}=\frac{500 \times 60}{100}=300$
$L R 1=500+300=800(\mathrm{~N})$

Life Calculation
Calculate life of the system and confirm the validation of size selection.
Life $(k m)=\frac{L C}{(L-F)^{3}} x f$
LC= Life Span Constant
$\mathrm{LF}=$ Load Factor
<Calculation Example>
CCalculation Example>
When using BVGH3 under the conditions of $L S=500$ (N), $L R=1000$ (N) and $\mathrm{Af}=1$ Load Factor LF= $\frac{500}{1701}+\frac{1000}{5900}=0.46$
Life $(\mathrm{km})=\frac{130}{(0.46)^{3}} \mathrm{x} 1=1335 \mathrm{~km}$

[^0]
[^0]: For LRmax, and LSmax, see P.583

