
Ball Splines - Overview

Overview of Ball Spline Alteration / Grease Application Services

Accuracy

Spline Shaft: Raceway Twist Tolerance (Max.)

Material	Tolerance
52100 Bearing Steel	13
440C Stainless Steel	33

Spline groove twist is measured at an arbitrary 100mm section of the effective shaft length. If the length to be evaluated is longer or shorter than 100mm, proportionally add or subtract from the standard values in the table.

Rotational Clearance	Unit: µm	

No.	Standard Preload			
NO.	52100 Bearing Steel	440C Stainless Steel		
6	-2~+1			
8	-Z~+1	-1~+4		
10				
13	-3~+1	-2~+5		
16		-2~+3		
20				
25	-4~+2	-		
30				

Tolera	Tolerance (Max) of Accuracies against Spline Shaft Supporting Portions Unit: μπ						
No.		②Flange Mounting Surface					
	Perpendicularity of End Face of the Shafts	Perpendicularity					
6		11 (27)					
8	9 (22)	11 (21)					
10		13 (33)					
13							
16	11 (27)	16 (39)					
20							
25	13	19					
30	13	13					

Total alice (max) of Accordance against opinio offatt outpoining Fortunis Offitt. pitt							
No.	1 Spline Portion Perpendicularity of End Face of the Shafts	②Flange Mounting Surface Perpendicularity					
	Perpendicularity of End Face of the Shalts	Perpendicularity					
6		11 (27)					
8	9 (22)	11 (21)					
10		13 (33)					
13							
16	11 (27)	16 (39)					
20							
25	13	19					
30	13	19					
Malua	Waluan in /) are for 4400 Ctainless Ctaal						

· Torque Load

89 126 163 36 (59) 54 (83) 68 (103) 62 34 (56) 45 (71) 53 (83) 39 44 50 57 68 83 Values in () are for 440C Stainless Steel

Values in () are for 440C Stainless Steel.

106 · L

120 · St · n

Life Hours

I h: Running Time

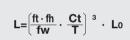
St: Stroke Length Reciprocating Cycles per Minute (cpm

L: Running Life

4 Max. Runout of Spline Nut Outer Surface

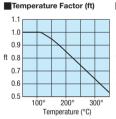
11 (27)

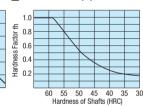
13 (33)

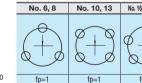

16 (39)

19

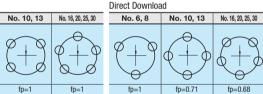
Calculation of Life


Running Life Radial Load

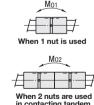



ft: Temperature Factor fh: Hardness Factor fp: Ratio of Rated Load fw: Load Factor Lo: Rated Life C: Basic Dynamic Load Rating F: Applied Radial Load

For values and factors, see below



Ratio of Rated Load (fp) Load Fivided



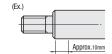
Load Factor (fw)

Conditions of Use	Load Factor (fw)
Minimal vibrations / shocks	1~2
(Low speed 15m/min or less)	1~2
Some vibrations / shocks	2~3
(Medium speed 60m/min or less)	2~3
Significant vibrations / shocks	3 or more
(High speed over 60m/min.)	3 01 111016

OI (IW)			Dasic nat	eu iorque	Dasic Lu	au nauny	Allowable Static		Sect	
2		No.	Dynamic	Static	Dynamic	Static	noM	nent	Mor	
			Ct	Cot	С	Co	M01	M02	of In	
,			N∙m	N⋅m	kN	kN	N⋅m	N⋅m	m	
,		6	3.8	7	1.2	2.1	5	36	6.2	
ore		8	4.8	8.7	1.2	2.1	5	36	1.97	
UI C		10	19 (11)	34 (21)	3.8 (2.4)	6.9 (4.3)	26 (15)	181 (102)	5.57	
		13	28 (20)	52 (37)	4.6 (3.3)	8.3 (5.9)	36 (22)	251 (148)	1.55	
		16	51	93	6.2	11.1	56	386	3.61	
		20	85	154	8.5	15.3	83	611	8.74	
		25	193	348	15.4	27.7	173	1248	2.13	

30 272 490 18.5 33.3 212 1581 4.373x10⁴ Values in () are for 440C Stainless Steel.

The number of nuts is 1, check the Mo1 column; and if the said number is 2, check the Mo2 column.

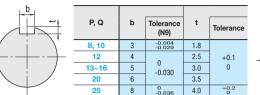

Operating Temp.

Plastic components are used in ball spline assemblies. Avoid using in high temperature environments, keep below 80°C.

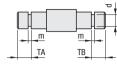
Annealing Range

Spline Shafts are already hardened, and are to be annealed upon machining.

Annealing may lower hardness on the machined area +10mm fore and aft. (See the examples below). Furthermore, the annealing portions are out the guaranteed range of O.D. Tolerance. When calculating stroke, count out the dimensions of annealing portions.



Annealing may lower hardness of the following parts:


- Threaded Ends
- Stenned Parts
- Tapped Ends · Wrench flats, set screw flats, retaining ring grooves, tap alteration

Alteration Overview

Dimensions of Key Grooves on the Shaft Ends (P and Q)

F	P, Q Tolerance	m 🗔		d	Tolerance	Applicable Retaining Ring			
			Tolerance						
3	0 -0.010	0.5	+0.05 0	2	+0.06	JIS E Type 2			
4	_			3	0	JIS E Type 3			
5	-0.012	0.7	+0.1	4	+0.075	JIS E Type 4			
6	-0.012	0	5.05	10.075	JIS E Type 5				
8	0	0.9		6.05	0	JIS E Type 6			
10	-0.015			9.6	0 -0.09	JIS C Type 10			
12		4 4 5	4 45		1.15		11.5		JIS C Type 12
13	0	1.13	+0.14	12.4	0	JIS C Type 13			
15	-0.018		0	14.3	-0.11	JIS C Type 15			
16				15.2		JIS C Type 16			
20	0	1.35		19	0	JIS C Type 20			
25	-0.021	1.33	23.9	-0.21	JIS C Type 25				

Lubrication

Ball splines are shipped greased.

Administer lubrication maintenance with Lithium soap based grease (Alvania Grease S2 by Showa Shell Sekiyu K.K), etc. as needed.

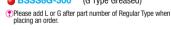
Various Grease Application Services

The Lubricant used for Ball Splines can be changed to any of the following Special Greases.

Service is provided to apply grease onto nuts and shafts. For performance of each grease, refer to the table below.

	Type Grease Product Name		Main Feature		
	L Type	ET-100K (Made by Kyodo Yushi)	High heat resistance and oxidation stability. Also high adhesion and cohesion with limited splash or leakage.		
-	G Type LG2 (Made by NSK Ltd.)		Suitable for clean environment due to low particle generation grease. Highly resistant to corrosion.		

	Item	Conditions	Unit	Measurement Method	L Type	G Type
- O	Thickener	-	-	-	Aromatic Diurea	Lithium Type
2	Base Oil	-	-	-	Ether Synthetic Oil	Mineral Oil + Synthetic Hydrocarbon Oil
ä	Base Oil Kinetic	tic 40°C mm²/a	mm²/s	JIS K2220 5.19	103	30
ē	Viscosity 1	100°C	111117/5		12.8	-
e L	Miscible Consistency	-	-	JIS K2220 5.3	280	207
e D	Dropping Point	-	°C	JIS K2220 5.4	<260	200
as	Evaporation Amount	99°C x 22hr	wt%	-	0.15%	1.40%
G Fe	Oil Separation	100°C x 24hr	wt%	JIS K2220 514	1.2%	0.8%
0	Operating Temp.	In Air	°C	-	-40~200	-10~80


Precautions for Use

For Particle Generation Amount upon grease application, refer to the "Comparison of Particle Generation (Experimental Values)" section on P.266, "Linear Bushings." 🖭 f G Type grease, Low Miscible Consistency grease, is applied onto the small dia. portion (No. 6, 8, or 10), resistance may be increased, and thus, sliding motion may be degraded.

(L Type Greased) 3SSS8G-300 (G Type Greased)

Price Configure Online

Configure Online

■Grease Application Service Charges Table

Part Number	Unit Price (Add to the price of Standard Type		
(No.)	Nut 1 pc. Nut 2 pc		
6≤No.≤13			
16≤No.≤30			

Confirm the details of alterations from each page